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Alcohol use disorder (AUD) is a chronically relapsing disorder, characterized by a shift
from casual to compulsive intake of alcohol that is driven by changes in multiple
regions throughout the brain. Animal models, long recognized for their utility in
elucidating the biological underpinnings of human diseases, have enabled key advances
in our understanding of the risk, development, and treatment of AUD. Here, we provide
an overview of animal models used in the study of AUD, including both voluntary
consumption and forced exposure models that reflect the range from casual drinking to
alcohol dependence. We also review recent updates in the neurobiology across stages
of AUD using these models, which have elucidated the profound changes in cellular
physiology and molecular markers in key brain regions that are involved in regulation
of reward seeking and emotions. Currently available pharmacotherapies as well as
emerging treatments informed by the animal literature are also detailed.

What is the significance of this article for the general public?
Alcohol use disorder is one of the costliest public health issues in the United States.
This article reviews the preclinical animal models of alcohol exposure that have
critically furthered our understanding on the neurobiology of AUD and identified
potential pharmacotherapies for the disorder.
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The National Institute on Alcohol Abuse and
Alcoholism (NIAAA) has defined alcohol use
disorder (AUD) as “a chronic relapsing brain
disease, characterized by compulsive alcohol
use, loss of control over alcohol intake, and a
negative emotional state when not using (para.

1),” and estimates that 16 million people in the
United States alone meet the criteria for an
AUD (NIAAA, 2018a). The most recent version
of the Diagnostic and Statistical Manual of
Mental Disorders (DSM–5; American Psychiat-
ric Association, 2013) describes diagnostic cri-
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teria for having an AUD as meeting a minimum
of two out of 11 behavioral criteria, ranging
from the intention to drink (“Wanted a drink so
badly you couldn’t think of anything else”) to
physical tolerance (“Had to drink much more
than you once did to get the effect you want? Or
found that your usual number of drinks had
much less effect than before?”) during a 12-
month period. The disorder can be further clas-
sified as mild, moderate, or severe, depending
on the number of criteria met. Historically,
AUD was categorized to include two distinct
disorders, with alcohol abuse characterized as
“harmful use,” leading to physical or mental
harm in the absence of alcohol dependence, and
alcohol dependence, focusing on psychological
and physiological symptoms, including craving,
tolerance, and withdrawal (NIAAA, 1995). So-
cial, low-risk drinking, as defined by the
NIAAA (2018b), includes fewer than three
drinks per day or seven drinks per week for
women, and four drinks per day or 14 per week
for men, though the precise biological nature of
maintaining appropriate alcohol consumption is
not known. Although many theories on addic-
tion have emerged, the addiction field’s consen-
sus is that the transition from casual to compul-
sive intake is thought to involve dysregulation
of the reward system and stress systems (Ber-
ridge & Robinson, 2016; Dong, Taylor, Wolf,
& Shaham, 2017; Koob & Le Moal, 1997; Koob
& Volkow, 2016; Volkow, Wise, & Baler,
2017), also commonly characterized as a reward
deficit and stress surfeit disorder (Koob, 2013).
However, the field currently lacks biological
disease markers of the DSM–5 (American Psy-
chiatric Association, 2013) clinical definition
for AUD, highlighting the need for further un-
derstanding of the physiological causes and pre-
dictors of AUD—a question for which animal
research plays an important and irreplaceable
role. Animal models have provided a remark-
able opportunity to understand the neurophysi-
ological and biochemical perturbations existing
before, during, and after various stages of alco-
hol exposure at an amazing depth unavailable in
humans. Importantly, discoveries made with an-
imal models form the foundation of exploration
into novel drug therapies. The current treatment
options recommended by the NIAAA include
behavioral treatments, support groups, and
medications (NIAAA, 2014). Several drugs,
discussed in this review, have been developed

for the treatment of AUD, targeting symptoms
during alcohol withdrawal and detoxification as
well as during periods of risk of relapse (Akbar,
Egli, Cho, Song, & Noronha, 2018). The devel-
opment and discovery of these compounds (out-
lined by the U.S. Food and Drug Administra-
tion, 2018, as Step 1 in the drug development
process) often begins with testing in animal
models.

Animal models of alcohol addiction must
meet pharmacological characteristics of addic-
tion, such as tolerance and physical dependence
(Mello, 1976). Researchers have noted through-
out the years that no single animal model will
capture all attributes of addiction and that each
model will present its own strengths and weak-
nesses in reflecting the human condition (e.g.,
Becker & Lopez, 2004; Griffin, Lopez, &
Becker, 2009; Rhodes, Best, Belknap, Finn, &
Crabbe, 2005; Salimov & Salimova, 1993;
Thiele, Crabbe, & Boehm, 2014; but see Becker
& Ron, 2014). For example, animal models
have struggled to capture the nature of “crav-
ing” or “thinking about” alcohol, similar to the
“desire” to drink. However, each model can
effectively model some aspects of addiction and
can be used in combination with others. Here,
we review some of the most common models of
alcohol exposure and their face validity as mod-
els of human consumption as well as some of
the neurobiological techniques and information
discovered using animal models. Although
models using nonhuman primates have pro-
vided important advances to our understanding
of AUD (e.g., Baker, Farro, Gonzales, Helms,
& Grant, 2014; Schwandt et al., 2010; Vivian et
al., 2001), the current review will focus on
rodent literature.

Voluntary Exposure Models

Multiple rodent models of alcohol exposure
exist that allow for the voluntary consumption
of alcohol based on the traditional premise that
drugs of abuse act as positive reinforcers
(Lynch, Nicholson, Dance, Morgan, & Foley,
2010). A common theme of these models is that
animals are single-housed (allowing for precise
measurement of individual alcohol consump-
tion, though some exceptions exist, as noted in
the Forced Exposure Models section.), are
maintained on a reverse light cycle (i.e., lights
off in the morning, allowing their active phase
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to coincide with the standard workday), and are
provided ethanol (usually diluted in water) dur-
ing a predetermined schedule. Some models
include the addition of sweeteners such as sac-
charin and sucrose to make the ethanol more
palatable (Ji, Gilpin, Richardson, Rivier, &
Koob, 2008). The benefits of these models are
that they allow natural consumption of alcohol
across various lengths of time with little or no
training. They are inexpensive and accessible to
run. The models also allow individual variabil-
ity in drinking to be captured. However, it
should be noted that one of the major necessities
of these models, single housing (a form of so-
cial isolation), can influence drinking levels
(Chappell, Carter, McCool, & Weiner, 2013)
and requires larger vivarium space to house
animals.

Drinking in the Dark

The NIAAA (2018b) defines binge drinking
as a pattern of drinking producing blood alcohol
concentrations (BACs) above 0.08g/dL, usually
in a pattern of four (for women) or five (for
men) drinks over the course of 2 hr, which is
considered a key risk factor for the later devel-
opment of AUD (Gowin, Sloan, Stangl, Vatsa-
lya, & Ramchandani, 2017). “Drinking in the
dark” (DID), first developed by Rhodes et al.
(2005), is specifically designed to elicit high
levels of ethanol consumption in rodents that
mirror those levels observed in human binge
drinkers. Following single housing and adapta-
tion to the light cycle, mice or rats are provided
ethanol in water (typically 20% ethanol volume/
volume) 3 hr into the dark cycle for an access
period of 2 hr (i.e., on a schedule of lights off at
7:00 a.m., ethanol access is 10:00 a.m. to 12:00
p.m.). This is repeated for 3 days. On the fourth
day, the animals receive a 4-hr access period,
during which they routinely consume intoxicat-
ing levels of ethanol that correspond with hu-
man binge drinking (above 0.08g/dl). The 4-day
protocol can then be repeated any number of
times following 3 days of abstinence. Animals
are provided no other incentive or motivation to
drink, and they have free access to food (Thiele
et al., 2014). However, as water is not provided
during the short period of ethanol access, some
authors have considered DID to be rather a
forced consumption model (Blednov, Mayfield,
Belknap, & Harris, 2012; Holleran & Winder,

2017), which could result in distinct behavioral
and neurobiological profiles (Gilpin, Karanikas,
& Richardson, 2012).

This pattern (20% ethanol for 2 hr on Days
1–3, 4 hr on Day 4, and a break from Days 5–7)
has been used routinely and successfully by a
number of laboratories (Kamens et al., 2017;
Lowery-Gionta et al., 2012; Pleil, Rinker, et al.,
2015; Rhodes et al., 2005, 2007; Sparta et al.,
2008). One of the most important aspects of this
model is the similarities to human binge drink-
ing—the rapid consumption of clinically intox-
icating levels of alcohol. In addition, repeated
cycles of DID (upward of six cycles) results in
the emergence of behavioral phenotypes of
early stage ethanol dependence (including in-
creased voluntary ethanol intake) but not of
later stages (i.e., anxiety-like behaviors and
ataxia; Cox et al., 2013). Therefore, DID is a
useful procedure for modeling the predepen-
dence (i.e., drinking before compulsive use)
stages of ethanol consumption (Thiele & Na-
varro, 2014). The high throughput design makes
it efficient to test a large number of animals
(Thiele & Navarro, 2014) and includes cohorts
of different genetic backgrounds or other ma-
nipulations (Vanderlinden, Saba, Bennett, Hoff-
man, & Tabakoff, 2015). Establishing the DID
protocol in an animal laboratory does not re-
quire expensive equipment (simply, a scale,
fluid bottles with stoppers, and ethanol—though
access to a mechanism to assess (BACs) is
recommended). Ethanol consumption can be
measured as grams of ethanol per kilogram
body weight, after accounting for ethanol rela-
tive density (Kamens, Silva, Peck, & Miller,
2018).

Two-Bottle Intermittent Access

The intermittent access (IA) model has also
been used successfully to model alcohol con-
sumption. The IA model allows similar high-
level, binge-like alcohol consumption as DID
but often requires longer schedules of access,
along with the concurrent availability of water.
First characterized by Wise (1973), mice or rats
are typically provided 20% ethanol for 24 hr on
alternate days, with water freely available
throughout the exposure (Carnicella, Ron, &
Barak, 2014). About one third of the total eth-
anol consumed during the 24-hr access period is
consumed during the first 30 min, which
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matches the patterns seen in the DID model and
similarly meets NIAAA criterion for binge
drinking (Carnicella, Amamoto, & Ron, 2009).
IA can be repeated over long periods of time,
leading to an escalation of alcohol intake (Hwa
et al., 2011; Hwa, Holly, DeBold, & Miczek,
2016). Others have noted that IA may be used to
induce dependence-associated symptoms, in-
cluding escalation in voluntary alcohol intake
(Hwa et al., 2011; Kimbrough, Kim, Cole,
Brennan, & George, 2017), with hyperalgesia
and other signs of physical dependence (Fu et
al., 2015). Interestingly, prolonged exposure (4
weeks and longer) to this model does not result
in cognitive impairments or anxiety-like behav-
iors following protracted cessation of alcohol
access (George et al., 2012). Smutek et al.
(2014) recently combined IA with radio fre-
quency identification to allow the group hous-
ing of mice, overcoming one of the complica-
tions of these models (social isolation) and
further reflecting the conditions under which
human drinking occurs. Because subjects have
access to water or alcohol solution, intake mea-
sures can include alcohol volume or weight
normalized to body weight as well as preference
ratios, in which the volumes of alcohol con-
sumed relative to water consumed are com-
pared. Thiele et al. (2014) recently published
detailed protocols for both DID and IA, includ-
ing the materials needed.

Another related model is the restricted access
model, in which animals are provided daily
access to both ethanol (concentrations ranging
from 10% to 20% vol/vol) and water for 30 min
to 2 hr (e.g., Gill, France, & Amit, 1986; Mar-
tinetti et al., 2006). Similar to the IA model, the
restricted access model allows for episodes of
highly intoxicating, binge-like bouts of alcohol
consumption, with BAC levels exceeding 0.08
g/dl (Becker & Ron, 2014; Ji et al., 2008; Mur-
phy et al., 1986); alcohol consumption levels in
these two models are highly correlated (Boyle,
Smith, Spivak, & Amit, 1994). Alcohol con-
sumption in the restricted model can vary by
genetic backgrounds (Blednov et al., 2012;
Martinetti et al., 2006; Murphy et al., 1986).
Additionally, a study by Ji et al. (2008) suggests
that ethanol consumption in this model can be
prevented by pharmacological treatments by the
mu-opioid receptor antagonist naltrexone, the
selective serotonin-reuptake inhibitor dulox-
etine, or the corticotropin-releasing factor Type

I receptor antagonist MPZP, thus highlighting
the potential of this model for future studies on
treatment of binge-like drinking.

Continuous Two-Bottle Choice

Although IA engenders high levels of alcohol
intake that escalate over time and result in de-
pendence-like symptoms (Fu et al., 2015; Kim-
brough et al., 2017), two-bottle choice alcohol
consumption elicits levels and patterns of intake
that parallel those of moderate or “social” drink-
ers. Like IA, the two-bottle choice model allows
free 24-hr access to alcohol solution and water.
However, access to both solutions is available
for voluntary consumption over consecutive
days. This pattern of access typically elicits low
to moderate levels of alcohol intake that can
vary substantially by the subject’s genetic back-
ground (Mayfield, Arends, Harris, & Blednov,
2016; Yoneyama, Crabbe, Ford, Murillo, &
Finn, 2008). With two-bottle choice models, the
concentration of the alcohol solution can range
from barely detectable (�5%) to relatively high
(20%) levels. Varying the concentration of the
alcohol solution over time can provide informa-
tion on the sensitivity of subjects to many fac-
tors, including alcohol’s reinforcing properties
and palatability. Because levels of alcohol in-
take using two-bottle choice are at neither end
of the consumption limit, the upper of which
often occurs in the DID and IA paradigms, this
model is ideal for understanding moderate, so-
cial patterns of alcohol intake and for investi-
gating the effects of experimental manipula-
tions that may either increase or decrease
alcohol drinking. For example, two-bottle
choice was paired with DID to assess the impact
of a history of binge drinking on later free-
choice alcohol consumption (Cox et al., 2013).
One drawback is that peak BACs are difficult to
determine on a group level, as the time of great-
est alcohol intake varies greatly among individ-
ual subjects.

Operant Alcohol Consumption

Operant alcohol consumption has also proven
incredibly useful in understanding the nature of
AUD (Blegen et al., 2018; Lopez & Becker,
2014; Rassnick, Pulvirenti, & Koob, 1992;
Weiss, Lorang, Bloom, & Koob, 1993). Ethanol
can be self-administered in an operant paradigm
orally (Carnicella, Yowell, & Ron, 2011), intra-
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venously (Grahame & Cunningham, 1997;
Windisch, Kosobud, & Czachowski, 2014), or
as an intragastric gavage (i.e., serving as a pos-
itive reinforcer for an experimenter-defined be-
havior; Czachowski, Prutzman, & DeLory,
2006). In these models, mice or rats are trained
to lever press or nose poke for a fixed amount of
ethanol (i.e., under a specific schedule of rein-
forcement, such as a fixed ratio schedule,
whereby a specific number of pokes/presses lets
to delivery of a predefined fixed amount of
alcohol). As reviewed in Lopez and Becker
(2014), this model has been particularly useful
in animals with a history of alcohol dependence
(such as those made dependent via alcohol va-
por inhalation, discussed below; e.g., Roberts,
Heyser, Cole, Griffin, & Koob, 2000), and has
the unique ability to separate appetitive and
consummatory behaviors (that is, alcohol seek-
ing vs. alcohol drinking; Samson, Slawecki,
Sharpe, & Chappell, 1998).

Additionally, operant conditioning paradigms
have been used to model relapse in alcohol
seeking after a period of abstinence. Here, the
delivery of alcoholic rewards is paired with a
sensory stimulus (visual or auditory) or with an
addictive drug (e.g., alcohol or cocaine). Fol-
lowing extinction training in which drug-
seeking response (i.e., lever pressing or nose
poke) is no longer accompanied by reward and
cue delivery, animals undergo reinstatement
testing in which a cue-induced drug-seeking
response is assessed. Additionally, reinstate-
ment could also be initiated by the presence of
a stressor, such as intermittent footshock or
social defeat (Mantsch, Baker, Funk, Lê, &
Shaham, 2016). These models of drug-, cue-, or
stress-induced reinstatement of drug-seeking
behaviors have been successful in recapitulating
aspects of craving and relapse in human alco-
holics, with distinct neurocircuitry and neuro-
chemical profiles (Koob & Volkow, 2010; Man-
tsch et al., 2016).

Forced Exposure Models

Models that involve forced exposure of eth-
anol are often used for their controlled, limited
variability in BACs and their ability to induce
ethanol dependence. These models often mini-
mize individual variability via experimenter-
controlled doses of ethanol. Administration
routes other than oral consumption include in-

tragastric gavage (Khatri et al., 2018) and intra-
venous infusion (Mello, 1976), each with their
own strengths and pitfalls, as outlined below.
Models such as oral gavage, whereby the mouse
or rat is restrained by the experimenter and
ethanol is administered directly into the stom-
ach via a needle with a ball bearing placed down
the esophagus, has been noted as particularly
stressful (Plackett & Kovacs, 2008). Though
oral gavage has been used as a mechanism of
alcohol-binge consumption resulting in alcohol-
withdrawal symptoms (i.e., the Majchrowicz
binge alcohol protocol; Faingold, 2008), others
have found that chronic intragastric gavage cou-
pled with an ADH inhibitor does not increase
voluntary drinking (Griffin, Lopez, et al., 2009).
Intraperitoneal injections into the animal’s body
cavity allow rapid administration of ethanol in
saline, which can be useful for the assessment
of the effects of acute doses of ethanol. Acute
injections of ethanol have been used to address
alcohol-induced effects on peripheral tissue and
bone (Iwaniec & Turner, 2013), as well as in-
flammatory responses (Chen et al., 2013) and
alcohol sensitivity, through assays such as the
loss of righting reflex (Ponomarev & Crabbe,
2002), in which stress effects are not as large of
a concern.

The previously described forced models (i.e.,
injection, gavage) usually focus on acute, short-
term administration of alcohol. These models
are particularly useful in their ability to capture
predependence exposure to alcohol (e.g., Fain-
gold (2008)). However, they are less effective in
capturing long-term, high-intake, dependence-
inducing alcohol exposure (Griffin, Lopez, et
al., 2009). Animals can also self-administer eth-
anol for long periods of time in a model that is
still forced consumption: In liquid diet models,
the animal’s daily caloric and nutritional allot-
ment is mixed in a liquid concoction containing
alcohol, thereby requiring the animal to drink
the alcohol-containing liquid for its daily nutri-
tion (McBride & Li, 1998; Moy, Knapp,
Criswell, & Breese, 1997; Obernier, White,
Swartzwelder, & Crews, 2002). This model also
relies on caloric drive, rather than the alcohol
itself, to increase ethanol consumption.

Chronic Intermittent Vapor Ethanol

The chronic intermittent vapor ethanol model
(commonly referred to as the “CIE” model)
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involves the exposure of rodents to ethanol va-
pors over a period of days or weeks. This model
is noted for its ability to capture the transition to
drug addiction via long-term excessive admin-
istration while still allowing for tightly con-
trolled levels of ethanol administration and
BACs. In addition, this model has been well
characterized and elicits postdependent behav-
ioral (e.g., anxiety-related behaviors and further
increases in ethanol consumption; Griffin, Lo-
pez, et al., 2009; Jury, Diberto, Kash, & Hol-
mes, 2017; Radke et al., 2017) and neurobio-
logical (DePoy et al., 2013, 2015; Gilpin,
Richardson, Cole, & Koob, 2008; Griffin, 2014;
Griffin, Lopez, Yanke, Middaugh, & Becker,
2009) alterations observed in human AUD pa-
tients. In the CIE model, mice or rats remain
group housed and are placed into clear plastic
chambers in which vaporized ethanol can be
pumped in. Vaporized ethanol (yoked controls
receive air) is usually administered for 14 to 16
hr a day, with a subsequent 8 to 10 hr of alcohol
withdrawal, over the course of multiple days.
The length of vapor ethanol exposure, intended
to model the time course and development of
alcohol addiction, generally ranges from 4 to 8
weeks (Gilpin & Koob, 2010; Pleil, Lowery-
Gionta, et al., 2015). In addition to the vapor-
ized alcohol, for mice, most labs administer
injections of an alcohol dehydrogenase inhibitor
(such as pyrazole) prior to the placement of
animals in the chambers to account for their
high rates of alcohol metabolism. Administra-
tion of alcohol dehydrogenase inhibitors allow
mice to maintain elevated BACs throughout the
14- to 16-hr exposure (Radke et al., 2017);
because of their slower rates of alcohol metab-
olism, rats do not require this step. In contrast to
the models allowing choice consumption of al-
cohol, the CIE model provides forced consump-
tion. Though the aspect of choice is eliminated,
it affords the ability to tightly control the access
period (including onset, offset, and total length
of exposure) and BACs. Additionally, this
model is typically paired with voluntary and/or
choice alcohol intake models like operant self-
administration and two-bottle choice limited ac-
cess to introduce assessment of relative levels of
voluntary intake between alcohol “dependent”
and “nondependent” animals (e.g., Anderson,
Lopez, & Becker, 2016; Kimbrough et al.,
2017; Kreifeldt, Le, Treistman, Koob, & Con-
tet, 2013; Lopez & Becker, 2005; Lopez, Miles,

Williams, & Becker, 2017). As noted in Kim-
brough et al. (2017), the combination of the IA
paradigm of chronic binge drinking and the CIE
model allows for the assessment of the transi-
tion to excessive drinking seen in humans.
Withdrawal-related behaviors can be seen for
days following the cessation of vapor ethanol
exposure (Schulteis, Markou, Cole, & Koob,
1995), and animals show key anxiety- (Becker,
2000; Kash, Baucum, Conrad, Colbran, &
Winder, 2009; Pleil, Rinker, et al., 2015) and
depression-related (Slawecki, Thorsell, &
Ehlers, 2004) phenotypes in withdrawal and
even weeks later, during abstinence. In addition,
animals that were exposed to the CIE model
showed a rapid escalation in alcohol consump-
tion (O’Dell, Roberts, Smith, & Koob, 2004;
Rimondini, Arlinde, Sommer, & Heilig, 2002).

Decades of results show that alternating pe-
riods of alcohol vapor exposure and withdrawal
over the course of weeks increases alcohol in-
take and induces symptoms of AUD seen in
humans, including increased anxiety, compul-
sive patterns of alcohol intake, and somatic
withdrawal symptoms. These types of experi-
ments have been instrumental in characterizing
the neuropathophysiology of alcohol depen-
dence and have thus come to be considered
among the best models with which to identify
new treatments for AUD. Indeed, as noted by
Koob (2013), the alcohol vapor approach shows
face validity as a model of alcohol addiction
(Heilig & Koob, 2007). However, this model is
much more expensive than choice drinking par-
adigms due to the necessity of a commercially
available vaporized ethanol machine (though
construction in-house is possible). In addition,
as reviewed in Holleran and Winder (2017),
only a small percentage of patients suffering
from AUD and at risk for alcohol-withdrawal-
induced symptoms actually experience severe
symptoms (Maldonado et al., 2015). Therefore,
this model may be best used as a proxy for
intense withdrawal symptoms associated with
more chronic and severe AUD like alcohol de-
pendence.

In Utero Exposure

Of the most important advantages of animal
models of AUD is the ability to assess in utero
exposure to ethanol, allowing for research into
the development of fetal alcohol spectrum dis-
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order (FASD). Initially characterized in 1973
(Jones & Smith, 1973; Jones, Smith, Ulleland,
& Streissguth, 1973), recent work has conser-
vatively estimated that 1% to 5% of U.S. first
grade children meet the diagnostic criterion for
FASD (May et al., 2018), making it a major and
costly public health epidemic, the effects of
which cannot be experimentally modeled in hu-
mans. Mattson et al. (2010) have attempted to
build neuropsychological profiles of individuals
diagnosed with FASD versus control individu-
als, with an 85% overall classification accuracy.
However, much work is needed to understand
the relationship between time course (when al-
cohol exposure occurs during the pregnancy),
alcohol levels (amount consumed by the
mother), and other factors on the development
of FASD, which is more easily and more
quickly modeled in rodents. The gestational pe-
riod in rats and mice is incredibly short com-
pared with humans (approximately 18–23 days
in total, with the third trimester equivalent oc-
curring during Postnatal Days 1–10), making
them ideal candidates for the assessment of
prenatal alcohol exposure (for extensive review,
see Patten, Fontaine, & Christie, 2014). Re-
searchers have adapted the vapor ethanol cham-
bers in the CIE model to expose both pregnant
damns and postnatal pups (equivalent to the
human third trimester), allowing for assessment
of alcohol exposure across any part of fetal
development (Morton, Diaz, Topper, & Valen-
zuela, 2014). These studies have demonstrated
profound and lasting changes in neuronal prop-
erties in FASD models at a level of detail not
afforded in human studies (for examples, see
Baculis, Diaz, & Valenzuela, 2015; Diaz, Jotty,
Locke, Jones, & Valenzuela, 2014; Diaz,
Mooney, & Varlinskaya, 2016; Rouzer, Cole,
Johnson, Varlinskaya, & Diaz, 2017). For ex-
ample, seminal work by Sulik, Johnston, and
Webb (1981) demonstrated that two small doses
of alcohol during pregnancy led to craniofacial
malformations, and alterations in the develop-
ing brain, in embryos within 24 hr of exposure.
Other work has shown eye malformations
(Cook, Nowotny, & Sulik, 1987) and neural
white matter (Cao et al., 2014) following pre-
natal alcohol exposure. For a detailed protocol
in constructing vapor chambers for pre- and
postnatal vapor ethanol exposure, as well as
suggested ethanol settings, see Morton et al.
(2014).

Although there are many experimental ben-
efits to using forced exposure models, some
caveats and limitations also exist. For in-
stance, the natural variability in consumption
is lost in a forced exposure model. There may
also be differences in activation and recruit-
ment of stress-related neurocircuitry, though
this remains to be comprehensively investi-
gated. In addition, this is a considerably dif-
ferent administration experience compared
with humans drinking alcohol.

Neurobiological Tools and Targets

Animal models of AUD provide the oppor-
tunity for the in-depth assessment of brain states
involved in addiction. Many of the brain regions
identified as crucial to the development and
transition to addiction, as well as the key mo-
lecular players, were identified using animal
models (Koob & Volkow, 2010). Many molec-
ular targets with different sites of action have
been identified at the level of both the ligands
(neurotransmitters) and their receptors, at the
synapse both presynaptically and postsynapti-
cally, and through neuromodulation by neuro-
peptides and neurohormones (Abrahao, Salinas,
& Lovinger, 2017). Though an in-depth over-
view of all brain regions and known mecha-
nisms is outside the scope of this review, we
provide an introduction to key targets in the
development and treatment of AUD.

Genetic Models

Multiple tools are available to animal re-
searchers that are as-of-yet unavailable in hu-
man research, in addition to the vast array of
animal behavioral models (Becker, 2000). In-
bred mouse and rat strains, in which littermates
are virtually genetically identical, have pro-
vided an abundance of information into under-
lying brain states. Common inbred mouse
strains, including 129, C57B/6, and DBA/2, dis-
play different basal behavioral phenotypes and
thus lend themselves to understanding the mo-
lecular profile of susceptibility to various drugs
of abuse (Crawley et al., 1997). In addition,
selective breeding allowing for the removal or
insertion of precise genes has provided a vast
array of information into the mechanism of in-
dividual genetic alterations (reviewed in Bark-
ley-Levenson & Crabbe, 2012), and identifying

228 CROWLEY, DAO, MAGEE, BOURCIER, AND LOWERY-GIONTA

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.



genetic variants that lead to susceptibility to
AUD underlies precision medicine (Rinker &
Mulholland, 2017). For example, the BXD re-
combinant inbred strains of mice, which show a
range of alcohol consumption (Gill, Liu, & Dei-
trich, 1996), have recently been used to demon-
strate novel gene candidates in brain regions
such as the nucleus accumbens and prefrontal
cortex (PFC; Rinker et al., 2017).

In addition, both mice and rats have been
bred to have specific behavioral traits as op-
posed to via specific gene introduction or dele-
tion (such as high or low alcohol consumption;
Rockman & Glavin, 1984), resulting in unique
complex genetic profiles. This strategy, in con-
trast to single-gene knock-in or knock-out ap-
proaches, allows for the selection of behavioral
phenotypes, resulting in the ability to investi-
gate the complex genetic interactions that me-
diate that phenotype. The alcohol preferring P
rats and nonpreferring NP rats (Lumeng, Hawk-
ins, & Li, 1977), as well as the Sardinian alco-
hol preferring rats (Colombo, Lobina, Carai, &
Gessa, 2006), have been used to identify factors
such as sensitivity to other drugs of abuse
(Hauser et al., 2014; Lê et al., 2006). In addi-
tion, “high drinking in the dark” (HDID) mice
have been developed, with high heritability of
high BACs (Barkley-Levenson & Crabbe,
2014). Various short-term high- and low-
alcohol-preference mice have also been devel-
oped, termed HALP/LAP1-3 (Belknap, Rich-
ards, O’Toole, Helms, & Phillips, 1997; Green
& Grahame, 2008). A full list of selectively
genetically bred mice and rats for drinking stud-
ies was recently published (Crabbe, Phillips, &
Belknap, 2010).

Behavioral Manipulations

Behavioral pharmacology has been the foun-
dation of drug research for decades, allowing
for the assessment of both systemic administra-
tion of drugs, brain-region specific (via intracra-
nial administration) effects of drugs, and
formed the infrastructure of anatomical charac-
terizations of brain regions in drug abuse. As
reviewed by Branch (2006), behavioral pharma-
cology provides the opportunity to use drugs of
abuse, such as alcohol, as a stimulus, to produce
changes, and to investigate the physiological
and behavioral changes produced by those
drugs (Branch, 2006; Thompson & Schuster,

1968). For example, microinjection of ethanol
directly into the posterior ventral tegmental area
(VTA) supports self-administration of ethanol
(Ding, Rodd, Engleman, & McBride, 2009;
Hauser et al., 2011), and the injection of a
dopamine Type II receptor agonist quinpirole
(Hauser et al., 2011), a serotonin-3 (5HT-3)
receptor antagonist ICS 205–930 (Hauser et al.,
2014; Rodd et al., 2010), or nicotine (Hauser et
al., 2014) into this area can interfere with it. In
addition, behavioral pharmacology is the cor-
nerstone of medication development efforts, in
which the therapeutic potential of candidate
medications for treatment of addiction are eval-
uated using preclinical models.

In addition, emerging technologies such as
chemogenetic interventions with designer re-
ceptors exclusively activated by designer drugs
(DREADDs; Roth, 2016; Vardy et al., 2015)
and optogenetic interventions with channelrho-
dopsin and other opsins (Zhang et al., 2010)
have allowed for the investigation of specific
subclassifications of neurons and neuronal path-
ways in a variety of behaviors and disorders.
Both of these techniques involve stereotaxically
injecting virus containing the gene for the re-
ceptor of interest (DREADD or opsins), though
mouse lines expressing each of these in specific
neuronal subsets have recently been developed.
DREADDs offer the opportunity to activate in-
tracellular signaling cascades and shift the prob-
ability of action potential firing with a system-
ically (usually intraperitoneally) administered
ligand, clozapine-N-oxide, whereas optogenet-
ics involves the insertion of a light-activated
cation channel into the cell membrane, allowing
for light activation or silencing of the neuron.
With optogenetics, no drug is administered, but
a fiberoptic cable coupled to a laser is implanted
into the brain region of interest. The ability to
manipulate (inhibit or activate) specific popula-
tions of neurons in specific brain regions and
examine effects on behavioral outcomes, in-
cluding those related to addiction, have already
informed our understanding of AUD (Bass et
al., 2013; Jaramillo et al., 2018; Millan, Kim, &
Janak, 2017). Both of these technologies have
been reviewed extensively elsewhere—for
DREADDs, see Lee, Giguere, and Roth (2014),
and Urban and Roth (2015), and for optogenet-
ics, see Deisseroth and Hegemann (2017),
Häusser (2014), and Kim, Adhikari, and Deis-
seroth (2017).
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Electrophysiology

Much of the rodent alcohol literature has
focused on electrophysiological measurements.
Neurons are known to produce bioelectricity
(Hodgkin & Huxley, 1952), and the advent of
micropipettes (Graham & Gerard, 1946) has
allowed researchers to understand how neuronal
communication is changed at the level of the
individual neuron, a tool unavailable in humans
that allows for precise identification of relevant
neuronal subpopulations and systems. In the
patch clamp technique, membrane properties,
ion channel activity, and neuronal firing can be
studied, allowing for the assessment of electro-
chemical properties of the cell membrane and
how other neurotransmitters and factors interact
with the membrane (Hamill, Marty, Neher, Sak-
mann, & Sigworth, 1981). This approach has
been used to understand both the acute effects
of ethanol on neural activity when applied di-
rectly to brain slice preparations and the effects
of protracted in vivo ethanol exposure on adap-
tations in neural activity (Carta, Ariwodola,
Weiner, & Valenzuela, 2003; Crowder, Ari-
wodola, & Weiner, 2002; Herman, Contet, &
Roberto, 2016; Lowery-Gionta, Marcinkiewcz,
& Kash, 2015; Rinker et al., 2017). For a review
and introductory guide to the patch clamp tech-
nique, see Molleman (2003), and for a video
tutorial and protocol, see Segev, Garcia-Oscos,
and Kourrich (2016).

Neurotransmitters, Peptides, and
Modulators

Decades of research into the pharmacological
actions of alcohol have provided substantial ev-
idence for the widespread interaction between
alcohol and classic neurotransmitters, including
�-amminobutyric acid (GABAergic), glutama-
tergic, dopaminergic, and serotonergic system.
These topics have been extensively reviewed in
Koob (2004), Koob and Volkow (2010), Mar-
cinkiewcz, Lowery-Gionta, and Kash (2016),
and Noble (1996). The current review will focus
on recent evidence on peptidergic modulators
and their potentials as therapeutic targets for
AUD.

Animal models have allowed rapid assess-
ment of potential pharmacological therapies
such as those targeting the opioid receptors and
dopamine receptors (Sabino, Kwak, Rice, &

Cottone, 2013). Neuropeptide Y (NPY) 1-re-
ceptor targeting drugs have emerged as a prom-
ising therapeutic target (Sparta et al., 2004), as
changes are seen in multiple brain regions fol-
lowing multiple alcohol exposure paradigms,
lengths, and withdrawal conditions. Thiele,
Marsh, Ste Marie, Bernstein, and Palmiter
(1998) demonstrated that alcohol-preferring rats
had reduced NPY expression in multiple brain
regions, and that NPY-deficient mice have in-
creased alcohol consumption and other ethanol-
related behavioral alterations (Thiele et al.,
1998). Ehlers et al. (1998) demonstrated that
although hypothalamic NPY was not affected
following 7 weeks of the CIE model, it was
upregulated following 1 month of withdrawal.
Corticotropin-released factor (CRF) and its re-
ceptors (Type I and Type II) are encouraging
targets (Lowery & Thiele, 2010; Schreiber &
Gilpin, 2018). Alcohol activates CRF-express-
ing neurons in the hypothalamus (part of acti-
vation of the HPA axis; Rivier & Lee, 1996); as
reviewed extensively in Schreiber and Gilpin
(2018), CRF’s interactions with alcohol vary by
age, alcohol exposure, and brain region. For
example, binge ethanol drinking does not re-
quire CRF signaling via the HPA axis activity
(Lowery et al., 2010) but does require CRF
signaling in the central nucleus of the amygdala
(Lowery-Gionta et al., 2012). Interestingly,
NPY and CRF have also been shown to interact
with each other to influence alcohol drinking.
Pleil, Rinker, et al. (2015) demonstrated that
NPY suppressed binge drinking (DID) via an
inhibition of CRF-expressing neurons specifi-
cally within the bed nucleus of the stria termi-
nalis, highlighting the roles not only of NPY
and CRF but also of interactions of these pep-
tides within a precise brain region in the control
of alcohol consumption. Importantly, Pleil,
Rinker, et al. demonstrated that this mechanism
is conserved to nonhuman primates, further
highlighting the utility of such rodent models,
as the effects were preserved across lower and
higher order species. This work has been the
foundation of the exploration of NPY-targeting
drugs, in particular, for AUD (Thorsell &
Mathé, 2017). Though outside the scope of this
review, confirmation of mechanisms between
rodent and nonhuman primate work in the alco-
hol field has been an important focus and a
foundation of exploring new treatment op-
tions—see work by Kathy Grant. NPY and CRF
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actions in other brain regions have also been
identified as important, highlighting that they
may have a general, more global role in alcohol
addiction (Lowery-Gionta et al., 2012; Sparrow
et al., 2012; Valdez, Zorrilla, Roberts, & Koob,
2003; G. Wu et al., 2011). Thus, CRF-releasing
neurons, as well as CRF receptors, are particu-
larly promising target for AUD (Koob, 2003;
Pleil, Rinker, et al., 2015).

Dynorphin and the kappa opioid receptor sys-
tem, long known for their role in stress and
anxiety (Al-Hasani et al., 2015; Crowley et al.,
2016), are also heavily involved in withdrawal
(particularly withdrawal-associated anxiety)
and may be an effective treatment target (Crow-
ley & Kash, 2015). The kappa opioid receptor
system is thought to mediate “antireward” sys-
tems in the brain, and activation of this Gi/o
coupled receptor system often leads to dyspho-
ria and aversion (Crowley & Kash, 2015). Much
work has focused on the role of the dynorphin/
kappa opioid receptor system in alcohol with-
drawal, particularly in mediating stress re-
sponses seen during withdrawal (Anderson &
Becker, 2017; Karkhanis, Holleran, & Jones,
2017; Lê, Funk, Coen, Tamadon, & Shaham,
2018; Van’t Veer, Smith, Cohen, Carlezon, &
Bechtholt, 2016), and its importance has re-
cently been identified in the human literature as
well (Bazov et al., 2018).

Neurocircuitry of AUD

Multiple brain regions have been identified
as undergoing profound changes during the
course of alcohol exposure and subsequent
addiction. As there are many excellent and
comprehensive reviews on this burgeoning
topic, here, we briefly describe the highlights
of this work (Abrahao et al., 2017; U.S. De-
partment of Health & Human Services, 2016;
Koob, 2014; Marcinkiewcz et al., 2016; Ro-
berto & Varodayan, 2017). According to the
Surgeon General’s report on addiction, the
cycle of addiction is described as including
(a) the binge/intoxication stage, (b) the neg-
ative affect/withdrawal stage, and (c) the pre-
occupation/anticipation stage (craving for al-
cohol; Koob & Volkow, 2010). Each of these
stages has key brain regions and neurotrans-
mitters involved in the transition to the fol-
lowing stage. This pattern is followed by al-
most all drugs of abuse (Koob, 2013). During

the binge/intoxication phase, initial exposure
to drugs of abuse, including alcohol, engages
the mesolimbic dopamine system (Leone, Po-
cock, & Wise, 1991; Morikawa & Morrisett,
2010; Olds & Milner, 1954; Shnitko, Ken-
nerly, Spear, & Robinson, 2014; Q. Wu, Re-
ith, Kuhar, Carroll, & Garris, 2001), both
within the VTA and in its target regions.
Continual exposure to the drug leads to dys-
regulation of dopamine and reward-related
circuitry.

Though activation of VTA dopamine neu-
rons is certainly a hallmark of substances of
abuse (Di Chiara & Imperato, 1988), other
brain regions show dopamine-independent ac-
tivation during alcohol binge and intoxica-
tion, such as the central nucleus of the
amygdala (Möller, Wiklund, Sommer, Thor-
sell, & Heilig, 1997) and the ventral pallidum
(June et al., 2003; Melendez, Rodd, McBride,
& Murphy, 2004). As drug use persists, brain
stress systems are engaged during the nega-
tive affect and withdrawal stage. This stage
involves brain regions that coordinate stress
and emotional responses, such as the bed nu-
cleus of the stria terminalis (Kash, 2012;
Kash et al., 2015), and the central nucleus of
the amygdala, which have been researched at
a level of detail otherwise not afforded in
human studies. Finally, preoccupation/
anticipation/craving is thought to be heavily
dependent on the striatum. It is important to
note the difficulty in experimentally assessing
the human sensation of “craving” a drug of
abuse (Tiffany, Carter, & Singleton, 2000).
Additionally, the PFC, often thought of as an
executive control center exerting “top-down”
control of behavior, is heavily influenced by
alcohol (Abernathy, Chandler, & Woodward,
2010). Pleil, Lowery-Gionta, et al. (2015)
showed that although the CIE model exposure
did not alter measurements of synaptic drive
in the prelimbic cortex, it did cause presyn-
aptic disinhibition and postsynaptic increase
in excitatory transmission in the infralimbic
portion of the PFC. Other studies have shown
that the preoccupation/anticipation/craving
stage involves additional brain regions such
as the hypothalamus (Hammarberg et al.,
2009; Wayner, 2002), and the dorsal raphe
nucleus has emerged as an important site of
alcohol-induced changes (Lowery-Gionta et
al., 2015).
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Current and Future Treatments

There are currently three Food and Drug Ad-
ministration-approved pharmaceutical interven-
tions as a first line treatment for AUD (NIAAA,
2018c). Naltrexone, a drug that is also used to
lessen consumption of opiates and narcotics such
as heroin, can help reduce the desire to consume
alcohol and maintain abstinence (Laaksonen, Ko-
ski-Jännes, Salaspuro, Ahtinen, & Alho, 2008;
Rösner, Hackl-Herrwerth, Leucht, Vecchi, et al.,
2010). Naltrexone can be injected once per month
or administered daily by mouth. However, com-
monly reported side effects (5%–10% of patients)
include nausea, headache, and depression. Acam-
prosate, a drug with an unknown mechanism of
action, reduces the urge to drink in heavy drinkers
(Jonas et al., 2014; Laaksonen et al., 2008; Rös-
ner, Hackl-Herrwerth, Leucht, Lehert, et al.,
2010). Acamprosate must be administered orally
three times per day. Disulfiram lessens the desire
to drink by causing unwanted side effects when an
individual does consume alcohol, such as nausea,
vomiting, and flushed skin (Laaksonen et al.,
2008). However, these side effects make treatment
compliance difficult (Skinner, Lahmek, Pham, &
Aubin, 2014). Despite the limited pharmaceutical
treatment options, some off-label treatments have
proven promising for AUD. Topiramate, an anti-
epileptic drug, has been investigated for its poten-
tial to treat a variety of psychiatric disorders, in-
cluding AUD, particularly in veterans and AUD
with comorbid posttraumatic stress syndrome
(Batki et al., 2014; Del Re, Gordon, Lembke, &
Harris, 2013; Ralevski, Olivera-Figueroa, & Pe-
trakis, 2014). Prazosin, typically used to treat high
blood pressure, is currently in a Phase 2 clinical
trial for alcohol addiction (Pocock & Dietel,
2013). Several other therapeutic targets, including
the anti-inflammatory, phosphodiesterase 4 sub-
type inhibitor Idubilast and Apremiblast, and �2
adrenergic receptor agonist Guanfacine, are cur-
rently in clinical trials for treatment of alcohol
craving and relapse. Though the lack of a com-
prehensive treatment with limited side effects for
AUD is daunting, emerging targets such as the
CRF, NPY, and dynorphin systems are promising.
It is nevertheless noteworthy that, despite a ma-
jority of preclinical studies supporting the efficacy
of CRF antagonists for treatment of affective dis-
orders and addiction, clinical trials have unfortu-
nately failed to demonstrate their antidrinking and
anitcraving effects in alcohol dependent individu-

als (see Spierling & Zorrilla, 2017, for a discus-
sion of the current status of clinical trials using
CRF antagonists). The discouraging clinical re-
sults therefore have warranted further investiga-
tion into the physiological functions of CRF sys-
tems in emotion and stress response as well as the
physicochemical properties and pharmacokinetics
of CRF antagonists for optimal results in human
patients.

Conclusion

Animal models have provided vast contribu-
tions to both our understanding of AUD and po-
tential treatment options. Various models are
available for the assessment of alcohol’s effects at
different stages of the development of addiction.
Generally, choice consumption animal models
(drinking in the dark, IA, and two-bottle choice)
are inexpensive, high throughput, predependent
alcohol consumption models. Forced exposure
(such as chronic intermittent vapor ethanol), in
contrast, provides a dependent, long-term expo-
sure model, capable of assessing alcohol’s effects
in utero, though at a much higher purchasing cost.
In addition, other forced exposure models (intra-
gastric and intraperitoneal administration) are rec-
ommended for acute exposure experiments. Ani-
mal models have also provided a key opportunity
to understand how individual brain regions and
transmitter systems are altered during binge/
intoxication, negative-affect/withdrawal, and pre-
occupation/anticipation/craving stages of alcohol
addiction. In particular, animal studies have been
able to identify peptidergic populations such as
NPY, CRF, and dynorphin, and identify regions of
the amygdala, extended amygdala, and PFC as
undergoing important changes during this transi-
tion through the stages of addiction. In addition,
tools such as genetic manipulations, electrophys-
iology, and brain-site specific behavioral pharma-
cology, coupled with the rapid gestational period
and life span of mice and rodents, make it easy to
conduct high-throughput in-depth analysis of the
role of specific genes, neuronal populations, and
pathways in the development of alcohol addiction.
These techniques, coupled with the available be-
havioral models, will be vital in achieving the
goals of the National Institutes of Health’s Preci-
sion Medicine Initiative in building molecular and
phenotypic profiles of individuals and diseases,
including AUD (Lloyd, Robinson, & MacRae,
2016).
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